
To appear in: Boden A, Nett B, Wulf V. Operational and Strategic Learning in Global Software Development - Implications from two
Offshoring Case Studies in Small Enterprises. IEEE Software. Accepted for publication.

Operational and Strategic Learning
in Global Software Development

Implications from two Offshoring Case Studies
in Small Enterprises

Submitted to IEEE Software

Alexander Boden
Institute for Information Systems, University of Siegen

alexander.boden@uni-siegen.de

Bernhard Nett
Institute for Information Systems, University of Siegen

alexander.boden@uni-siegen.de

Volker Wulf
Institute for Information Systems, University of Siegen

volker.wulf@uni-siegen.de

2

Abstract
Small to medium-sized software enterprises (SME) increasingly participate in offshoring
activities. Detecting market niches and deploying highly flexible software development
approaches are seen as key competitive abilities of SME. Therefore, it is of major importance to
learn how offshoring affects these capabilities which are closely related to organizational
learning. We present case studies from two German companies that engage in offshoring of
software development. By comparing the cases with each other, we highlight the different
structures the companies chose for their development work and how these structures were
enacted in practice. Furthermore, we show how related practices affect strategic and operational
aspects of Argyris et al.’s (1985) conception of single- and double-loop learning. Our case
studies show that organizational learning is a problem for SME engaged in offshoring and that
an inability for double-loop learning can even lead to failures in case of organizational
restructuring.

Introduction
With increasing globalization, distributed software teams have become fairly common. Usually,
companies which offshore their software development expect a reduction of costs and access to
new markets. On the other hand, distributed teams are faced with problems related to the spatial,
temporal and cultural barriers of globally distributed work.

For a long time, studies have mainly treated offshoring as a make-or-buy decision of large
companies, offering recommendations and discussing best practices. While today offshoring is
increasingly understood as a dynamic process, there are still few studies which focus on related
long-term implications of offshoring on key organizational capabilities, especially with regard to
small and medium-sized enterprises (SME) which make 99.8% of the German software industry
(cf. German Federal Statistical Office, 2003). SME count their abilities to offer highly
customized software solutions and to adapt quickly to changing customer demands amongst
their most important competitive capabilities [1]. Hence, when SME decide to engage in
offshoring, it has to be organized in a way that allows flexible adaptations of the organization to
changing demands—or, in other words, ongoing operational and strategic learning.

We want to contribute to the understanding of learning in the context of offshoring by
presenting an ethnographic field study of two small German software enterprises engaging in
software offshoring in Russia. After discussing related work, we describe our research methods.
The subsequent sections present the two case studies as well as the different models of work
organization. We conclude the paper with a discussion of the identified offshoring practices and
learning strategies. The related “lessons learned” are meant to provide interested practitioners
with ideas about what to expect in practice.

3

Related Work
Recent studies have increasingly focused on operational aspects of distributed cooperation [2],
but there are still few studies on long-term consequences on key organizational capabilities [3],
not to mention the learning necessary to secure them, for instance, in SME.

In software engineering, learning has been discussed as a major issue for software
development in the context of knowledge management. Its early years were inspired by the
belief that technology-intensive systems could accumulate and automatically provide knowledge
“on demand”. Learning was reduced to input-output-processing, and knowledge conceptualized
merely in its explicit form [4].

However, although knowledge may be represented in the form of explicit content, such
content can become knowledge only when being contextualized. Furthermore, knowledge needs
to be framed in order to contribute to the expertise needed in practice [5]. Learning, therefore,
cannot be reduced to data storing in the brain, but requires understanding in much broader sense,
for example, opportunities to develop practical competences and expertise [6]. Hence, learners
should not be considered as mere consumers, but as decisive actors, who develop cooperative
activities of their own [7]; a transition which has been labeled as the “second wave of
knowledge management” [8].

The related paradigm of self-organization was thus elaborated as a means and end in
computer-mediated education. It has also been discussed in relation to organizational
development and distributed teams. Orlikowski [9] has hinted at knowing-in-practice as an
important element for organizational operation. By illustrating how knowledge was enacted and
(re-)constituted by several practices of a distributed organization (such as sharing identity,
interacting face-to-face, aligning efforts, learning by doing and supporting participation), she
argues that instead of hypothetically constructing formal, de-contextualized “best practice”
models, “useful practices” should empirically be identified in practice.

In our paper, we will complement Orlikowski’s argument by addressing the question how
organizational learning is enacted in practice by SME of the German software industry. In doing
so, we refer to the framework of Argyris et al. [10] which states that learning can be identified
when one compares the consequences of actions with the expectations that guided their
planning. In their view, learning entails two different layers which need to be covered: single-
loop learning refers to the operational level (“Are we doing things right?”), while double-loop
learning comprises learning on the strategic level (“Are we doing the right things?”). This
means that learning of enterprises can be derived from decisions dedicated to operational or
strategic aspects of the cooperation.

In the case of offshore partners, reflecting on operational and strategic decisions can be
particularly challenging. While learning in local teams often takes place implicitly, distributed
actors may have to adopt explicit strategies to organize their knowledge exchange. This is
especially important for SME needing to ensure their flexibility. As SME are often highly

4

Sidebar 1: Articulation Work
The concept of articulation work was
introduced by the sociologist Anselm Strauss
for the analysis of interdependent actions of
cooperating actors.

Articulation work is needed to regulate the
division of labor: who does what, when,
where, how, with which quality, etc. Yet,
articulation work is a broader, more holistic
concept than coordination: while the latter
only governs the planned distribution of labor
(in the sense of distributing responsibilities),
articulation work also manages unexpected
preconditions which emerge due to not fully
controllable circumstances.

Hence, articulation work comprises important
aspects of self-organization and its integration
into the formal distribution of work, thus
enabling a much broader understanding of
cooperative work in complex environments
like offshoring projects.

Further Reading:

Schmidt, K., and Bannon, L. Taking CSCW
Seriously: Supporting Articulation Work.
Computer Supported Cooperative Work
(CSCW): An international Journal, 1(1)
(1992), 7-40.

Strauss, A. L. The Articulation of Project
Work: An Organizational Process. The
Sociological Quarterly, 29(2) (1988), 163-
178.

dependent on agile development methods, exhaustive
communication and flexible interaction,
implementing organizational learning can be difficult
for them in the context of offshoring [11].

In this context, Hinds and McGrath [12] have
highlighted the role of emerging informal hierarchies
for smooth coordination of distributed teams.
However, as offshoring projects do not per se lead to
efficient informal hierarchies and smoothly
coordinated cooperation, the question remains what
offshore partners can actively do in order to secure
the agility of their software development, and if there
is any opportunity to use organizational learning for
this purpose. As a related conceptual framework, one
can use the prescriptive model of Argyris et al. as a
descriptive one, trying to identify opportunities for
related “useful practices” in the sense of Orlikowski.

To do so, we adopted Anselm Strauss’ conception
of articulation work [13] (see sidebar 1). Articulation
work may contribute to learning on the operational
level, as it underpins formal divisions of labor by
informal, flexible adjustments. However, it can also
contribute to learning on the strategic level, when
collaborative actors reflect upon their articulation
work, relating to shared experiences and discussing
possible solutions [14].

Hence, by analyzing the role of articulation work
within offshore software development of SME, we
want to understand the impact of offshoring on the
agility of these companies. We try to understand the opportunities offshoring has for the
different types of learning and for organizational learning, which does not only require learning,
but also the possibility of institutionalizing its results.

Research Methods
We have been conducting our study in several phases since 2006. After an initial literature study
we conducted semi-structured interviews with thirteen managers and developers of German
SME, two interviews with representatives of an IT industry association and a large German
company as well as four interviews with Eastern-European offshoring vendors. The preliminary

5

results of the interviews were used to identify challenges of offshoring as well as strategies used
by German SME to deal with them. From our sample, two companies were chosen for further
analysis: Alpha and Beta.

For the next phase of the data collection we drew on a triangulation of ethnographic research
methods, comprising interviews, on-site observation and artifact analysis. The on-site obser-
vation was conducted by visiting each of the German SME for a period of twelve working days.
In addition, we visited the Russian partner company Alpha for one week. In order to understand
the perspective of Beta's partner company, we also conducted an interview with the Russian
manager in Saint Petersburg. Since the end of 2008, we are continuing our study in form of an
action research approach in company Alpha.

The analysis of the data was based on Glaser’s and Strauss’ Grounded Theory [15]. After
each step, the transcripts of the material were scrutinized and coded. At first, we composed
categories (such as “knowledge exchange”, “informal coordination”, or “formal workflow”)
based on the findings in the collected data. Then, these categories were related to each other and
evolved during the further research.

The Case Studies
We chose two companies, which expressed very different perceptions of the importance of
formalization for successful offshore software development. Both companies had several years
of experience with offshore development in Russia.

Company Alpha
Alpha is a company providing data processing products and services in the field of statistic and
documentation. Most of the approximately 20 employees of the company are software
developers. The product line comprises databases, documentation and presentation systems used
by archives or museums.

Since the late 1990s, the company has been employing four software developers in Tomsk,
Siberia. The business relation started with an internship of a Russian developer who still works
for the company. Due to the positive experiences with him, the German manager decided to
expand the cooperation. The first project aimed at the reengineering of an existing standard
software product. Despite unexpected delays in the development, the offshoring was expanded
to several smaller customer-specific projects which involved a closer cooperation between
German project leaders and offshore developers.

During the interview in the first phase of our study, the German owner underlined the
reliance on flat hierarchies and flexible self-organized work. Formal work processes and the use
of development models will be considered if the customer insists on them, but from the
company’s perspective this is not necessary. Instead, the company emphasizes informal and

6

flexible work practices, allowing the project managers to run their projects with great levels of
(semi-) autonomy. For the handling of specifications, the company relies on plain word
documents which are sent to the developers via email, or in some cases on a defect-tracking
system.

Company Beta
Company Beta offers a standard software solution (developed in two different branches) for
process modeling and related services in the field of process management. The management is
located in Bonn. Four offshore developers in Saint Petersburg carry out the software
development under the supervision of a German project leader in Berlin. Another seven
employees at the Berlin office provide testing and support.

According to the German manager the decision for offshoring mainly aimed at the reduction
of development costs. Due to personal contacts with a Russian developer, the company founded
a branch office in Saint Petersburg in 2002. The kick-off took place in Germany where the new
Russian employees stayed for a couple of months. After their return, they took over the software
development. Since then, the Russian team has grown quickly to an amount of fifteen
developers, which required certain adjustments in the formal division of labor (see below).

In contrast to Alpha, the CEO of Beta perceived successful offshoring of software
development as closely connected to a high maturity of the company’s development processes
on the basis of the CMM. Hence, the company relies on clearly defined business processes with
explicit responsibilities and standardized development routines. This was also reflected in the
use of a central development database with standardized descriptions of features to be
developed, which were to be updated regularly during the development process. Recently, Beta
terminated the cooperation with the Russian company due to risen development costs and
ongoing problems with the cooperation.

Different Models of Work-Organization
The models (1-4) in table 1 provide an overview over the different formal models chosen by
Alpha and Beta to organize their offshore software development. In this regard, models 1 and 2
describe patterns of cooperation implemented by Alpha. Models 3 and 4 represent the adaptation
Beta had to conduct in order to deal with emerging necessities of their offshoring project.

7

Alpha

 Model 1: Division of labor in

case of Alpha’s standard software solution
Model 2: Division of labor in case of Alpha’s
customer-specific projects

Beta

 Model 3: Initial division of labor in case of Beta Model 4: Division of labor in case of Beta after

the reorganization

Table 1: Offshoring models

The models represent different divisions of labor, resulting workflows, and inter-
relationships between the cooperating teams. This involves the exchange of artifacts such as
plans, specification documents, bug-descriptions and source code/prototypes. The arrows
indicate the direction of the transfer of artifacts and are usually embedded in articulation work,

8

as discussed below. Two-pointed arrows indicate exchange processes in close cooperation,
while the dashed line represents the barrier(s) between the local and the remote teams.

In regard to our analysis, the models can be used as hints to necessities of learning in
practice. On the one hand, these practices are related to the different tasks the teams have to
accomplish during their development work, for example in regard to learning about a new
product that is to be developed in operational terms (single-loop learning), or about how
experiences with product development can be implemented in the organization of the
development work in strategic terms (double-loop learning). On the other hand, we were
especially interested in offshoring-specific challenges of learning. Hence, arrows crossing the
dashed line will be the focus of our analysis.

Model 1: Division of Labor in case of Alpha’s standard software solution
Alpha’s offshoring started as a reengineering of an outdated legacy product. The corresponding
model 1 is rather simple, entailing inter-site connections mainly concerning the project plan
being transferred to the Russian team which in turn was to deliver the reengineered product back
to Germany (see table 2 for examples).

In regard to coordination and learning, the model shows a clear distinction between the
teams, almost resembling a “customer-vendor” relationship. One of the main challenges of
software projects—developing and understanding the specifications—was rather easy to handle
in this case since the existing product was only to be re-engineered. This could easily be fully
done offshore, mostly avoiding inter-site cooperation. This also included direct communication
between the customers of the German company and the Russian developers in cases of bug-
reports or feature requests. As the Russians had ample opportunities for self-organization—as
long as they kept up with deadlines and requirements—they were able to use their experiences
for operational decisions, for example, concerning the choice of development tools, the
documentation of the development as well as the distribution of tasks.

While there was related space for single-loop learning, the strategic project planning and the
formal coordination of the company (this is: double-loop learning) relied on regular personal
visits of the German manager at the offshore site in Tomsk, as well as on visits of the Russian
team to Germany for strategic workshops (which technology to choose for the next version,
rough project roadmap etc.).

Model 2: Division of labor in case of Alpha’s customer-specific projects
Due to positive experiences, the cooperation was expanded to several smaller customer-specific
projects. These were mainly led by German project managers, who directly cooperated with
Russian developers with the help of the Russian senior developer. Thus, the corresponding
model 2 contains many inter-relationships between the sites, relating to the cooperative handling
of specifications and code development.

9

Regarding articulation work and learning, these projects had a rather informal structure. The
initial articulation of the project work was mainly done in the course of personal meetings
between the staff of the different sites, during which the developers conjointly developed
specifications and discussed the project plans for the development work both in operational as
well as strategic terms. It was apparent that the German team members valued the technical
knowledge of the Russian team and involved them in product finding, too.

Due to the direct contact between the Russian teams and the customers (in model 1), the
Russian team learned about the German user domains. This eased the handling of the complex
model 2 projects, involving project planning, development and testing being performed in close
cooperation between the geographically dispersed sites. At the same time, the flat hierarchies
allowed the Russians to influence the trajectories of the project work and to bring in their own
ideas.

Summary (Alpha)
Looking at the different models of work organization in Alpha, it gets apparent that both model
1 as model 2 attempt to keep the core of software production integrated, and thus not to separate
the responsibilities according to phases such as specification, development and testing. On the
contrary, these three elements are held together thus allowing for agile, iterative proceeding.

Alpha’s strategy of offshoring thus rather was aiming at a replication of their own
organizational structure (adhocracy) at the offshore site. That means, in-house activities of
everyday software development, such as the specification of features, the development of code,
and testing are performed in a close cooperation between the sites.

Ongoing articulation work played a pivotal role for the accomplishment of everyday work, as
the division of tasks was always negotiated ad-hoc between the teams. Potential benefits of
specialization, on the other hand, were only exploited at a very low rate. Learning was
dependent upon considerable articulation work, which mainly remained focused upon limited,
situated problems at single-loop and double-loop learning, as well. Therefore, it could not
contribute to organizational learning, as it did not even consider structural changes of the given
adhocracy.

Model 3: Initial division of labor in case of Beta
The development of the standard software solution of company Beta followed a fixed release
cycle of six month. Initially, the formal offshoring model 3 was introduced, which aimed at the
offshoring of the development work to Russia, while all other tasks (such as the definition of
new features and the description and classification of bugs) were to remain in Germany. Hence,
interdependency between the teams merely concerned the exchange of specifications to be
written by the German team, and the software code to be implemented by the Russian team,
which in turn was to be tested in Germany.

10

In regard to coordination and control, the company tried to apply a much more single-sided
approach. The key for this practice was sought to be the preparation of exhaustive specification
documents for the Russians, which included ample information concerning the inter-relations
with other modules of the software, the design of the interface, expected behavior, and so on.
The Russians in turn were to document their progresses in terms of monthly reports and to
review their code on a regular basis for quality assurance. In addition, the German project leader
was to visit the offshore team on a regular basis, usually shortly before new releases. During
these visits, the German project leader mainly helped handling the bugs (usually discovered in
the last minute) and—if time allowed—discussed the features of the following release with the
Russians. Strategic questions (related to double-loop learning) where mainly discussed in
Germany.

From the perspective of the German team, the main challenge turned out to be the writing of
the exhaustive specification documents for the Russian developers. As the Russian team grew,
this task became harder and harder, because according to the German team leader “one day of
development required one day of writing specifications”. As it had become increasingly difficult
to specify new features quickly enough to keep the growing offshore team busy, the decision
was taken by the German management to change the formal division of labor (see model 4).

Model 4: Division of labor in case of Beta after the reorganization
After the restructuring, the inter-connections between the teams became much more complex
than initially intended. Since the Russian developers now had to write most of the specifications
themselves, the German team was able to reduce its work overhead significantly. On the other
hand, writing specifications demanded the exchange of the necessary context knowledge and
thus more articulation work between the teams.

In practice, the articulation work turned out to be difficult: since the Russians lacked most of
the necessary context information about the practical usage (e.g. the demands of the customer)
and the technical background of the product (e.g. interdependencies with certain modules) they
found it hard to write proper specifications. This led to frustration on both sides: the Germans
were discontent with the quality of the Russian specification documents and had to assist and
correct the work of the other team, requiring much time for articulation work; the Russians, on
the other hand, felt overstrained and fulfilled their new tasks only reluctantly.

In an attempt to improve the specifications and reduce the need for ample articulation work,
the company introduced an even higher level of standardization. By providing standardized
examples and checklists, which were meant to help the Russian developers with their tasks, the
company expected to reduce articulation work (visible in the amount of communication) and to
ensure the quality of the produced documentation. However, since the underlying problem of
lacking knowledge could not be solved easily, most of the problems prevailed and led to
increasing difficulties with the Russian developers, who started to neglect inconvenient tasks

11

(such as writing specifications) wherever possible. The ongoing problems contributed to the
decision to terminate the cooperation in 2008 (although it has to be stressed that the termination
was decided for several reasons, including fast rising wages in Saint Petersburg).

Summary (Beta)
Looking at Beta’s models of work organization, it became apparent that this company followed
a fundamentally different approach in comparison to Alpha. Instead of replicating its adhocracy
at the offshore site, the company aimed at an ambitious division of labor that resembled
specialization between the two sites. Hence the German site was to concentrate on planning and
controlling activities, while the actual development work was to be performed exclusively by
the offshore site with its lower wages.

As the modus of operation turned out to be problematic due to the high amount of necessary
articulation work (exceeding the benefits of specialization), the company decided to introduce
another (in a way, an even higher) level of formalization to reduce the demands of articulation
work. In contrast to Alpha, they did neither accept more frequent meetings nor more intense
communication between the sites.

That means that company B did not give up its demand to exploit the benefits of
specialization. It tried instead to re-organize specialization in a formal, top-down manner. When
the amount of the necessary articulation work exceeded its ambitious expectations, the
management reacted with structural changes of its specialization model. As innovative product
finding was not among the measures taken into account in this regard, the changes would
resemble single-loop learning—if there would have been any organizational learning, at all. In
fact, it was only the manager whose learning counted, while for example feedback from the
Russian team was not considered.

Discussion
Our case studies show that articulation work was demanding for both companies. The practices
we found in the field were similar to the ones Orlikowski described in her study [9]. For
example, intense face-to-face contacts, broad participation in meetings as well as the importance
of aligning efforts were important factors for the two teams (see table 2). However, there were
also differences which were related to the attempts of the companies to deal with these practices,
and also to the different types of products the companies were developing.

While enterprise A accepted the related articulation work of its small customer oriented
projects by intensifying the personal visits between the sites through organizing personal visits
and workshops, B tried to reduce it by increasing formalization of specialization in the
development of its standardized product. The strategy of company B turned out to be
problematic, as it did not account for the necessary mutual learning about important context
information and domain knowledge, or the necessary contact to the customer.

12

Model Operational
decisions

Strategic decisions Example of Articulation Work
between the sites

1 Taken by the offshore
developers (e.g. task
assignment,
development tools,
etc.).

Taken by the Russian
team manager in
cooperation with the
German manager (e.g.
system framework,
deadlines, etc.).

Russian developers visit Germany to
discuss strategic questions (which
technology to choose, rough project
roadmap etc.) with German developers
under supervision of the German
manager. Offshore team mainly
operates on its own afterwards.

2 Negotiated between the
German project leaders
and the offshore
developers (e.g. task
assignment,
development tools,
etc.).

Taken by the German
project leaders, with
consultancy of the
offshore developers (e.g.
system framework,
deadlines, etc.).

German project manager visits the team
in Tomsk to explain to them his vision
of a new project. Requirements and
project plan are specified cooperatively
during several meetings. Ongoing chats
or, if necessary, even prolonged visits
for coordinating the later development.

3 Taken by the Russian
team manager (e.g. task
assignment), and by the
German developers
(e.g. bug assignment).

Taken by the German
project manager (e.g.
deadlines,
specifications, etc.)

German project manager writes
specifications. The Russian team
manager assigns them as tasks to the
Russian developers, results are tested by
the German team. Regular visits of the
German project manager before
finishing new versions.

4 Taken by the Russian
team manager (e.g. task
assignment), and by the
German developers
(e.g. bug assignment).

Taken by the German
project manager, but
partially worked out by
the Russian developers
under supervision of the
German team
(specifications).

German project manager explains
development aims to the Russian
developers during his personal visits.
Offshore developers have to write the
specifications, which are in turn
checked by the German project
manager. As Russian developers are
lacking knowledge to write proper
specifications, this requires much
supervision. Forms are introduced to
help the Russians writing complete
specifications.

Table 2: Different kinds of learning and articulation work

In case of Alpha it became apparent that the discussions covered aspects such as the
formulation of specifications (“What does the customer need?”), possible technical solutions
(“How can we build that?”) and also some strategic questions (“Can we reuse something we
already have?”). In general, the focus was on operational aspects of the cooperation, but basic

13

questions such as the organization of work itself were barely covered, if covered at all. As the
company did not change its adhocracy for dealing with the offshore situation, but rather
replicated it, there was no need to broach the issue of the formal structure. In so far, double-loop
learning remained limited, as it did not allow for restructuring, a major domain for
organizational learning [10]. Beta, on the other hand, did engage in restructuring, but this was
reduced to a single-sided top-down decision by the German management, and it did neither
include the expertise of the Russian side nor that the expertise of the developers.

The inability of both companies to implement structural changes may be related to the
particular work practices of small software enterprises [1]. The practices of articulation work as
well as the models of cooperation we observed seem to be highly specific for small software
companies. SME often work in very flexible ways and usually cannot afford to engage in too
much specialization, or institutionalized self-reflection [14]—with the possible consequences we
found in our study.

Conclusion
According to Argyris et al.’s framework, double-loop learning should be a pivotal competency
for organizations, especially in volatile and dynamic environments like the software market.
However, our case studies show the difficulties that small enterprises may have in order to
develop their organizational structure in case of offshoring. By comparing the cases it gets also
apparent that it can be worse to restructure the offshore relation in an inappropriate way (as in
case of Beta) than to stick to pure adhocracy. Under the given circumstances, Beta’s attempt to
reach a high level specialization on the basis of process maturity turned out to be less successful
compared to the less ambitious approach of company Alpha, which did not even try to change
it’s structure. From our perspective, this is an interesting finding as offshoring strategies are
often discussed in relation to the benefits of a restructuring of the organization.

Our cases show that the related organizational learning can be problematic for offshore
cooperation. Decisions (as in company A) can be based upon distributed, situated experiences
(such as in organizational learning) when sticking to adhocracy and thus avoiding structural
change (a major potential of organizational learning). When, in contrast, decisions are taken
without taking into account the full offshore expertise, there is a high risk of failure. In both
cases, offshoring can endanger the agility of companies. This shows that further research on
opportunities for organizational learning, which fit the demands of SME, remains an important
task.

14

References
[1] Friedewald, M.; Rombach, H. D.; Stahl, P. et al.: Softwareentwicklung in Deutschland: Eine

Bestandsaufnahme. In: Informatik Spektrum 24, vol. 2 (2001), 81-90.
[2] Levina, N. and Vaast, E.: Innovating or Doing as Told? Status Differences and Overlapping

Boundaries in Offshore Collaboration, MISQ 32/2 (2008).
[3] King, W. R., and Torkzadeth, G. Information Systems Offshoring: Research Status and

Issues. MIS Quarterly, 32/2 (2008).
[4] Bjørnson, F.O. and Dingsøyr, T.: Knowledge management in software engineering: A

systematic review of studied concepts, findings and research methods used.
[5] Suchman, L.A.: Plans and situated actions: the problem of human-machine communication,

Cambridge University Press, 1987.
[6] Polanyi, M.: The tacit dimension, Routledge & K. Paul, 1967.
[7] De Paula, R., Fischer, G., Ostwald, J., 1999. Courses as Seeds: expectations and Realities,

Proceedings of CSCL 99
[8] Huysman, M. H., Wulf, V. (Ed.): Social Capital and Information Technology, Cambridge

MA, 2004.
[9] Orlikowski, W.: Knowing in Practice: Enacting a Collective Capability in Distributed

Organizing, Organization Science 13 (2002), 249-273.
[10] Argyris, C.; Putnam, R. and Smith, D. M. Action science. Jossey-Bass, 1985.
[11] Ramesh, B.; Cao, L.; Mohan, K. and Xu, P. Can distributed software development be agile?

Communications of the ACM 49 (2006), 41-46.
[12] Hinds, P. and McGrath, C.: Structures that work: social structure, work structure and

coordination ease in geographically distributed teams, Proc. Conference on Computer
Supported Cooperative Work (2006), 343-352.

[13] Strauss, A. L. Social organization of medical work. University of Chicago Press, 1985.
[14] Boden, A., Nett, B., and Wulf, V. Coordination Practices in Distributed Software

Development of Small Enterprises. Proc. International Conference on Global Software
Engineering (2007), 235-246.

[15] Strauss, A. L. and Corbin, J. M. Basics of qualitative research: techniques and procedures
for developing grounded theory. Sage Publications, 1998.

15

Author Biographies
Alexander Boden is a research associate at the Institute for Information Systems and New
Media, University of Siegen. His research areas focus on Global Software Engineering,
Ethnographic Methods and Computer-supported Cooperative Work. He studied Cultural
Anthropology in Bonn and is working on his Ph.D. thesis.

Bernhard Nett is holding a research position at the University of Siegen. His research foci are
Sociology, Media Appropriation, Business Ethnography, Action Research, Computer-Supported
cooperative work and Requirements Engineering. He is currently accomplishing a postdoctoral
lecture qualification process.

Volker Wulf is a professor in Information Systems and Director of the Media Research Institute
at the University of Siegen. At Fraunhofer FIT, he heads the research group User-centred
Software-Engineering (USE). His research interests lie primarily in the area of Computer-
Supported Cooperative Work, Knowledge Management, Human Computer Interaction, and
Participatory Design.
Information Systems and New Media
University of Siegen
Hoelderlinstr. 3
D-57076 Siegen, Germany

www.artos.uni-siegen.de

